GRAPH TRAVERSAL
ALGORITHM: DEPTH FIRST
SEARCH (DFS)
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WHY STUDY GRAPH TRAVERSAL ALGORITHMS?

Graph Reachability Problems Strongly connected components (Tarjan’s)

. Only for directed graphs.
Cycle Detection

. Biconnected Components
Topological Sort

Finding path in an unweighted graph
Connected Components 9P 9 grap

Bi tit h Check
Flood Fill Problems partite graph -hec

Articulati Point Brid
Shortest path in unweighted Graphs rticulation Points / Bridges
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GRAPH TRAVERSAL ALGORITHMS

Depth First Search (DFS)
Breadth First Search (BFS)
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HOW DEPTH FIRST SEARCH (DFS) WORK?

Start from a single node and traverse the graph in a depth first fashion.
Do depth first search at the adjacent nodes.
Keep going deeper until reaches a vertex which does not have any unvisited vertex.

Then backtrack (return) to the previous node and explore other branches/paths from that node.

Follows a single path as long as it finds a new node.
Explores a branch completely before moving on to a new branch of the graph

It goes deep first and branches later.

Keep tracks of the visited nodes so that no nodes get processed more than once.
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PSEUDO CODE

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked

vertices w adjacent to v.

DFS(u):
Mark u as "Explored" and add u to E
For each edge (u.v) incident to u
If v is not marked "Explored" then
Recursively imvoke DFS(v)
Endif
Endfor

Image source: KT Book

DFS (Recursive Version)

Input: graph G = (V, £) in adjacency-list
representation, and a vertex s € V.

Postcondition: a vertex is reachable from s if and
only if it is marked as “explored.”

// all vertices unexplored before outer call
mark s as explored
for each edge (s,v) in s's adjacency list do
if v is unexplored then
DFS (G, v)

Image source: T. Roughgarden

Complexity: O (V + E )
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Figure 22.4 The progress of the depth-first-search algorithm DFS on a directed graph. As edges
are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed
(otherwise). Nontree edges are labeled B. C, or F according to whether they are back, cross, or
forward edges. Timestamps within vertices indicate discovery time/finishing times.

Image Source: CLRS
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DFS(G)
1 for each vertex u € G.V

2 u.color = WHITE

3 u.T = NIL

4 time =0

5 for each vertex u € G.V

6 if u.color == WHITE

7 DFS-VISIT(G, u)

DFS-VisiT(G, u)

1  time = time 4+ 1

2 u.d = time

3 u.color = GRAY

4 for each v € G.Adj[u]

5 if v.color == WHITE

6 VT = U

7 DFS-VIsIT(G, v)
8 u.color = BLACK

9  time = time + 1
10 u.f = time

// white vertex u has just been discovered

// explore edge (u, v)

// blacken u: it is finished
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NEXT TOPIC?

Depth First Search (DFS) with Stack



