GRAPH TRAVERSAL
ALGORITHM: DEPTH FIRST
SEARCH (DFS)

AAAAAAAAAAAAAAAAA



WHY STUDY GRAPH TRAVERSAL ALGORITHMS?

Graph Reachability Problems Strongly connected components (Tarjan’s)

. Only for directed graphs.
Cycle Detection

. Biconnected Components
Topological Sort

Finding path in an unweighted graph
Connected Components 9P 9 grap

Bi tit h Check
Flood Fill Problems partite graph -hec

Articulati Point Brid
Shortest path in unweighted Graphs rticulation Points / Bridges

AAAAAAAAAAAAAAAAAA



GRAPH TRAVERSAL ALGORITHMS

Depth First Search (DFS)
Breadth First Search (BFS)

AAAAAAAAAAAAAAAAAA



HOW DEPTH FIRST SEARCH (DFS) WORK?

Start from a single node and traverse the graph in a depth first fashion.
Do depth first search at the adjacent nodes.
Keep going deeper until reaches a vertex which does not have any unvisited vertex.

Then backtrack (return) to the previous node and explore other branches/paths from that node.

Follows a single path as long as it finds a new node.
Explores a branch completely before moving on to a new branch of the graph

It goes deep first and branches later.

Keep tracks of the visited nodes so that no nodes get processed more than once.

RANIT DEBNATH AKASH



12

AAAAAAAAAAAAAAAAAA



12



12

AAAAAAAAAAAAAAAAAA



12

AAAAAAAAAAAAAAAAAA



12

AAAAAAAAAAAAAAAAAA












10

13

RANIT DEBNATH AKASH 13






10

13

RANIT DEBNATH AKASH 15






10

13

RANIT DEBNATH AKASH 17






10

13

RANIT DEBNATH AKASH 19



10

RANIT DEBNATH AKASH

20



4
13

DN

“o®

RANIT DEBNATH AKASH 21



10

13

RANIT DEBNATH AKASH 12



RANIT DEBNATH AKASH 23



AAAAAAAAAAAAAAAAAAA



AAAAAAAAAAAAAAAAAAA






RANIT DEBNATH AKASH 27



AAAAAAAAAAAAAAAAAAA



PSEUDO CODE

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked

vertices w adjacent to v.

DFS(u):
Mark u as "Explored" and add u to E
For each edge (u.v) incident to u
If v is not marked "Explored" then
Recursively imvoke DFS(v)
Endif
Endfor

Image source: KT Book

DFS (Recursive Version)

Input: graph G = (V, £) in adjacency-list
representation, and a vertex s € V.

Postcondition: a vertex is reachable from s if and
only if it is marked as “explored.”

// all vertices unexplored before outer call
mark s as explored
for each edge (s,v) in s's adjacency list do
if v is unexplored then
DFS (G, v)

Image source: T. Roughgarden

Complexity: O (V + E )

RANIT DEBNATH AKASH

29




Figure 22.4 The progress of the depth-first-search algorithm DFS on a directed graph. As edges
are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed
(otherwise). Nontree edges are labeled B. C, or F according to whether they are back, cross, or
forward edges. Timestamps within vertices indicate discovery time/finishing times.

Image Source: CLRS

RANIT DEBNATH AKASH

30



DFS(G)
1 for each vertex u € G.V

2 u.color = WHITE

3 u.T = NIL

4 time =0

5 for each vertex u € G.V

6 if u.color == WHITE

7 DFS-VISIT(G, u)

DFS-VisiT(G, u)

1  time = time 4+ 1

2 u.d = time

3 u.color = GRAY

4 for each v € G.Adj[u]

5 if v.color == WHITE

6 VT = U

7 DFS-VIsIT(G, v)
8 u.color = BLACK

9  time = time + 1
10 u.f = time

// white vertex u has just been discovered

// explore edge (u, v)

// blacken u: it is finished

RANIT DEBNATH AKASH

31



NEXT TOPIC?

Depth First Search (DFS) with Stack



